1.

THE MTMIK

AVALLAVA I NG

FAGILITY FORM eoz

(NASA CR OR TMX OR AD NUMBER)

TESIAN FORMIULATICN OF

s THECSY '

AN

FYk

57

(CATEGORY)

.ABSf.- PIOf.. De!)tr = iYL A AL T - sl e - bl
x g 3 \'
54 + S+

liass.




-

[ ]
18]
e e [
(%} L= )
ol U o L
> Y ]
K T B oh
R ~ m.: W 0 1}
A bey) .m “ [ o
i W I (o 4
v oS0
9 T ¢
o LW : e
4} i p L -
o £ T w L@
o O S
& M, W w
o [0} I 3 e
o] g O W.& m
£ it W 9} i
. M 5
W“ hw) o me ! Mm
@ o .2 &
¢ . '
o o ) o
. -
@ o
2 v
s 121
o e
P e
rent I £
3] o
ﬂ,\ ") ot €2}
.C.; ¢
Cos p_ 5
P A Y
*m ]
i Q
i

&
nout con

[y

T3 C oS

[s) A ornd

S0 B 14!

1.@, D - I
Y [

m 3 0 m
o .nm et G
Y £ &

. N W A.M o

o 0 [
T 1£]
vt : b

“ o .

Ve

w @ = "

- o &




.
1.

ocundary cond

ion and a &

34

-
-~ e
[T

£
3

ri of the
ess

-

Faltad

o]

all or p

EvVer,

~
=

e
L]

-
v
¢

g

e8

L

s -
ene gLres

a4

tiern of

o
Q
&)

atef

e

§814 )31

it

(343
NeLn

™

ns is not

ce

=4

rough the

je

uafions are
ispl

tha

a

2

-

Pl

2

ey £l
(R

P
e

g
[
&
@

t

Lerm.

5

21
YRS
%

je gage]

oF

~

ccedure

oy
=t

sk

<l

o

"
()
-
O

1

Felciehy

A

\
3

e0Ty O

0

i

et

oy

1
O
©
t
b=
i)
1t
5]
it
2y

8

ES
o~
L

T



& !
‘ Differential § Eguations of Fguilibrium ‘

The cquilibriom e¢uations of a membrzane in cartesian coordinates

. ar2 conveniently formulated in terms of proiected siress rzsultsnts N;k,
%
N _ M , N ., Fig 1.

! These ave related o the actecl siress resultants through the relations
|

! 2 o1 4
N, = (A2 Wy gy Ny = '“”‘)zNﬂ (2)

X k “*’2?;} ] ‘{’y ~<!+2j;
N = N 9 = 7 4
N =N, (3) N e =Ny {4)

where Z = Zix, v} is the eguztion of the middie surface.
i v .,

The force equilibzrium equations may be written in the form

N + N +p =0 (53
XX, X VE, ¥V hid
N + N +p =0 (6)
. XY, x yY.¥y ¥
(Zz, N__ +2Z, N ) 4+{(Z, N +Z, N hy+p =0 (7)
X Xx Yy Xy = X VX ¥ ¥y z

and the momeant equation vields |
N =N (8)

At the boundary the projecied stress vesultants defined with regard to the
nermal direction n and the tangeantial divection s are related to Nxx,’ Nyy’
ani N through the transformation formulas

‘ "J
| .2
‘ Nnn = ﬂxx cesz(? + Zny simp cos ¢ + Ny}’ sin @ {9}
.2 . H . Y - 2
Nss = Nx:* sin c{) -g,;-zxy sin L‘? poscp H\yy cos cP {10)
. . Z . 2 -
an = ny {ces @ - sin ¢ )+ (N - N};z} sin CFcos @ {11)

whorec(hs the angle betwesn the x axis and the oriented ncrmal, Fig. 2.
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The membrane equilibriurn equations are satisfied by letting

N =T, -3 {12}
XX vy b4

N = F, - J (13)
vy XX y

N =N =.T7, (14)
Xy VX XY

and requiving the siress function ¥ to satisfy the differential equation

L{F}) =2, xxF

o~

, - 27, F, +2Z, T, =g {15)
vy Xy Xy vy =X

Inege. 5t0 7. P D and p_denote the components of the surface
3 v z

lozd per unit projected arez in the x, y plane. J‘{, JY and q are defined as

foliows
x
—-— «r i 1
J’x—/ pxd~ (16}
X
's)
y
J =} d 17
Y v p‘/ bd 17
o
=.p +2Z, +Z, + Z, +z, I 18)
q pz prx ZYPY Zxxe ZYYY {18}

The limits of integrations % and Y, must be independent of x and v,
respactively, but are otherwise arbitrary.

The selvability of «g. 15 as depending on the gaussian curvature of
the middle surface and on ithe type of boundary cenditions is outside the
scope oi this paper. %6 It will ke assumed in the following that the problem
at hand does have a solation and the principle of stationary complementary
energy will be used to obiain such a solution when displacement boundary

conditions are imposed on 21l or pari of the boundary

4. Reissner, Eric, "Variational Considerations for Elastic Beams and
Shelle", Journal of the Engineering Mechanics Division, ASCE, 1962;
Proc. Paper No. 3057.

5. Flugge, W. and Geyling, F., "A General Theory of Deiormation of
Membrane Shells" 1¥e Congres International de Mecanique Appliquee,
Actes, Tome vi, Universite de Bruxelles, 1957, p. 250.

6. DBeschkine, Leon, "Sur les Equations d'equilibre des Surfaces minces"
Comptes Rendus des Seances del'Academie des Sciences, Paris, Gauthier-
Villars, 1935, p. 935.
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For a membrane Z displaczment boundary conditions may be specified.
The: zsually involve the tangential displacements only. The reasoc for
this iz that 2 specificaticn ¢’ the component of displacement normal to the
shell or of the rotation at thez bourdary makes the membrane soluiion gener-
ally unrelated to the state of stress away from the boundary of the shell.
Thiz may also be established by iniroducing the appropriate force constraints
into z general variaticnal theorer: of thin shell theory that may be found in
ref. 4 and noticing that the sifect of the consiraints on the natural boundary
centiiions of the varictiona’ equation is to alter those specifying the normal
displacement and the cotation but to leave unchanged those specifying the tan-
gen“igl comuoonents of displacement.

Because the force fcrmulstion is not made in terms of the actual

stroge resuliants but in terims of projected stress resultants, it is more

]
pet
=
»
g’
=
8
[x
o
ool
ot

coaranient to specify the dicpiacemsant boundary condition

does not involve the tangen‘izal dicplacemenis themselves but 2 other displace-

me=nt components ur: and u'. These are related to the actual tangential gis-

plaements by requiring the exprassion N:‘ uI: ¥ an us' to represent the work

3

pexr vait projected length of the membrane forces through the displacements

at 'az boundary. N  and i g 272 the normal and tangential projected siress
an n

reraitants.
The boundary coaditions may be taken in the form
™
Y oY

19w s | (20)
OWng

u' o=

n o N,

whzre ¥ ig a known function of N n and N o at the boundary. For specified
B n
boundary values of u' and u’ or for elastic boundary conditions expres sing
n s
uz‘! and u’ ag functions ¢ N and N o’ \*r’ can readily be constructed. In
8 n

nn
particular for a clamped boundary the membrane boundary conditions are
ur? = us‘ = 0 and &!/ mnay be tcken identically zero. In general ¥ may be ex-
Y3
pressed in terms of derivatives of the stress function through the relations
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. - D=

2 2
ET = F; + s F: = a8 - i
Non . s a J:: co c? JY 3in <{7 {21)
; =.F - O+ -J i
an Fi s (P, s s (JX Jy) sm?7 cos CP {22)

w

wherz a comma followed by 5 ¢r n indic

a1

\..n

.

arciength of or normal to tae pro
tha” respect that the meaning o

£ . 2 %;'/ is clear, contrary to F,

‘ns = s
which reguires T, s to be dzfined rnot only at the boundary but also in its

gn

1eizhkborhood. In fact F, = F, - Cf‘, F, .
. sn ns 8 '8

The Com Dlemenwr Ctrain Eneroy

In terms of strees wesuliarnis NY, defined with regarc to orthogonal
1}
curvilinear coerdinates arnd for a linearly elastic and isotrepic material
the complementary strain energy reduces to the stiain energy expressed in

ter:as cf the stregs resulianis and takes the iorm

1 2
W = e L - 2(1 + P U -
W ZEh[( I11 1\IQM) 2{t )),(N“ (N )_{

In order to express W in ierms of the projected siress resultants,

N,’ ;

may first be expressed in terme of the stress resultants Nij defined
\mm regard io the non-orthogonal curvilinear coordinates x and y. TFor

thic surpose the directicns on the surface corresponding to the subscript 1

N

are taken as the same. Letting € denote the angle between the cocordinate

lines {x) and {y} on the surface, Fig. 1, ij and Nij ave related through the
i

rvelztions

1 i z
Sy = T N +{N_, + N cos |
N11 im0 !L Nii + M cos @ {WIZ 321) os 9}

Nt = i
\322 sz sin 8
Nt =N + N,.. cos 8

12 12 ze

¢ =17 + N o
N21 ’\52177\22639

tes differentiation with regard to the

ected boundary, respeciively. It is noted in



| wheare
[ < v
i . cos 8 =272, Z (},":_Z"Z‘s 1/2 (1+Z,2} 1/2
2 2.1 _
sin 0 =(1+2z> +29 % 1428y Ve 1y 2B R

W izkes the form
i
2Fh sin? 8

. Z Z 2
= N, +3M__ +2N - 21 + ¥ )si N.. - ]
W [ ( 11 22 h cas 9) 2(1 + ¥ }sin G(N11 22 le)

12
In terms of the prcjected sirese resultants, eqs. 1 to 4, and per unit

arsa in the X, y plane the complementary strain energy takes the form

2

]

~1/2

{1 + Z +z,2')

N +(1 422N +2Z, Z, N ]2
x xx v yy x 7y xy

2 2
2ryyi+ze +ZP)N N -N )] (23)
z v ux yy xy

i

Variational Formulaiion

A functional having as Fuler equations and natural bound#ry cond’tions

. the equilibrium equations, force-displacement relations and boundary condi-

tions of thin elastic shells iz established in reference 4. The argument

fur.ctionse of the functioral are Jisplhcements, stress resuitanis, ard stress

couples. In order to be used in the present problem the functional must

first be specizalized for the merabrane theory but it must 2lsc be rnodified 8o

th:t only variations of forces are considered. This latter modification leads

to the principle of stationary complementary energy.

The functional takes thea the form

E:“W*dxdy-l-[\rds

D
where the first integral externds over the projected middle surface and the
seccond integral extends over the poriion D of the projected boundary curve
where displacement boundary conditions are specified. The stress function
F :makes stationary the functional E with 2 restrictions that the varied function

. F+oF satiefies the equiiibrium equation, (15), and possibly a stress boundary
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condition which may be specified on a portion § of the boundary. Thus the
restriction cn §F in the domain of integration takes the form of the subsidiary
condition

5L(F)=5(Z,XF, -2z, F, +2

, » F, )=0 (24)
X vy Xy Xy Yy xx

which can be treated by introducing a Lagrange multiplier7, A, function of

x and y. The functional takes the form

E'= ﬂ(w* + AL{F - q }}dx dy +ftyds (25)
[>]

The variation dF of F is now arbitrary throughout the domain of integration
and on the portion D of the boundaiyc The only restriction is that F + OF
satisfies the stress boundary cendition, if any, on S.

If the general solution of the differential equation for the stress function
ie known, it will depend on arbitrary constanis or functions of integration that
may be arbitrarily varied without viclating condition (Z4). In that case there
is no need to introduce the Lagrange multiplier and the application of the
direct methods of the calculus of variations yields the appropriate equations
for the determination of the arbitrary quantities in the expression of the
stress function. An illustrative example is presented in a subsequent para-
graph. If the general solution for the stress function cannot be determined
analytically, approximate methods for expressing the stress function in
terms of sufficiently many arbitrary quantities may be used. One such
method consists in replacing the differential equation L(F) - g = 0 by a
firite difference equation at each of n points in the interior of the membrane.
This yields a system of n linear algebraic equations in n + m unknowns of
which n are the values of F at the n interior points and m are the values of F
at m boundary pointe. These latter are arbitrary constants on which the
values of F in the interior of the membrane depend. The functional E which
may be computed.by numevical integration is thus transformed into a function

of m variables with regard to which it is made stationary.

7. Courant and Hilbert, "'"Methods of Mathematical Physics', Vol. 1,
Interscience Publishers, Inc., New York, 1953, p. 221.




Another possible method of expressing F in terms of arbitrary constants
consists in determining an approximate continuous solution of the differential
equation L)F) - q = 0 in terms of arbitrary boundary values of F. These may
be specified through a continucus function of position along the boundary
depending on undetermined constants. When it is not advantageous to
use direct methods such as described above the problem of the membrane
with displacement boundary conditions may be reduced to the solution of eq.

15 and of the Euler equation with the natural boundary conditions of the

functional Ef, eq. 25. These are derived in the next paragraph.

Euler Equation and Natural Boundary Conditions

The first variation of E°’ can be written in the form

o€’ =ﬁ[(£:<x+)\2;n)5p»'n - 2(Eq ¥ 22,5} 3Ry + (‘fW*“’W)S"—'“] dxdy

+j[.3_‘_|’, S(FI“ +CF;E.‘) + M 5(—Fms +CP:$E$)]JS (26)
?Nﬂﬂ ! ?an
D
' where, using eq. 23 and adopting the notation £ , &€, , 2& , for the
XX Yy Xy

partial derivatives of W¥,

E _ ?W*—- (H-?;: *zzt)_i\r—(m-?},‘)[(;+?’z)hi“ +(H—3,1;)N” +2 2,?,7 Nx,]

“ 7 8 Eh
1 1
-—(l-r’)(” 2,0+ ?/7) Nn ] (27)
57‘/ ) —'2\:{* _ (H—?}:C?}I) l[(,*z‘t)[(w?,‘:)f\}“ +('+2,';)N,, +22,3, N‘J
2] =3
_(,+v)(l+?},, + ?/1;-) N‘x]
{23)
« L3 2 "';f -
;5‘1 . oW =ﬂ(f+?/x+?‘fy) (2”;)7[(,‘.3;),\;“+(u»2,‘,)N” +22,72, N,,J
?NKY EL’ . .
e ()i + 25) N
(29)

Integration by parts must now be used so that only 5}3‘ appears in the area
integral and only 5F and "(F'n appear on the boundary integral. Using

Green's Theorem the following general relation may be established
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[‘&‘S oy g ,gy +f7? ZF;rx\\C.{Kd‘I «—]K«F“IVY xys%y ""fyy,u) Axé;’
+¢>§ o, —jg{fgsm-.? nss + @ (\es;fm)] S5k ds (30)

wheref , f , andf are 3 functionsofxandyandf , f :ndf
XX Xy vy an 8B

ar=z obtained through the same transformation formulas as eqr. 9 to 11.

2 2
£ = + ; ¥ i
e fxx cos tf 2 fxy s,n<f’c036P fYY sin”@ {31)
f =f in® 2 f n % 2 (32}
s = fix sin cp - m--(fcoscf) : cos ff
f =f (cosz - sin2 y + {F -f )sin® cos {33)
ns  xy ¢ ¢t Yy XX ¢
Identifying £ , - 2f znd f with the coefficients »f JF JF and
XX Xy Yy YY xy

r J'
eF, s’ respectively, in eq. 26 the Fuler differential equation is obtained

-

by equating to zero the coefficient of JF in the ar:a integral on the right

of 2q. 30. Obtain after simplification

LAY+ E -2¢ + € = (34)
XX, yY XY, Xy YV, XX
Eqz. 34 and 15 i. e.
L(F)=q (35)

form 2 equations for F and the Lagrange mu'.tiplier) . Ex-" éxy and £
are expressed in terms of I using egs. 27 to 29 and egs. 12 to 14.
In order to obtain the natural boundary conditions integration by parts

is performed on the boundary 'mtegral in eq. 26 and the result is added to the

Then the coefficients of 5F and 5F,n put to zero form the natural boundary

conditions. Obtain

oY A SRR
€, + M2+ @ 20n) + _é‘ﬁ),s + Qs INon (36)

[Ec; + X(Z,cs'{' ?:S-Zf“n;n -2 [Ens + )(2"‘5- (P,S 2'$ﬂ15

: 2f 2¥ _ o
- (f) (E“"-*’)\?ﬂm) (uN ) rs ’DNM-F@“ Nns (37)
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3

where € , € and € arerelatedto € , € and & through transforma-
nn  ns 8s XX Xy Yy
tion formulas similar to egqs. 31 to 33.

For eqs. 36 and 37 {0 form effectively a system of 2 boundary condi-
tions (Z,SS + (y, sZ, n) must be non zero, that is, the normal curvature of the
surface in the directiorn tangent {0 the boundary curve must not be zero. This
is a2lways the case for a surface of positive gaussian curvature. However, if
the surface has a negative gaussian curvature and part of the boundary curve
coincides with an asymptotic line eq. 36 does not contain A and becomes a
boundary condition for F. The problem then is not properly formulated as the
differential equation for F is of the hyperbolic tvpe.

If there is a force boundary condition taking for example the form of
an agsigned value of the stress function on a part (5) of the boundary, the
variation 5F must vanish on (S§ but JF, n remains arbitrary. Only one natural
boundary condition is then obtained on (S), namely eq. 36 which is a boundary
condition for A . A case of interests' 8 is the boundary condition ¥ = 0 with

one displacement boundary condition uf3 = 0. Eq. 36 yields then

c ,
Moo= - = (38)
2,5 +@,s 2.

on the part (S) of the boundary.
It will be shown subsequently that A is identical with the component

of displacement along the Z axis.

Application
Consider a shallow paraboloid of revolution with a rectangular projec-
tec boundary, such as shown in Fig. 3, and subjected to a uniform vertical

lozad p.

8. V.V. Novozhilov, "Thin Shell Theory', 2nd Edition, P. Noordhoff Ltd.,
Groningen, 1964, p. 182.
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Figure 3

The sdges at x = + F are joined to beams assumed to be infinitely stiff in
their own plane but infinitely flexible perpendicularly to their plane. Such
boundary conditions require

N =20 5 u' =0 atx = + g
XX s -
The condition Nxx = 0 may be reduced to

P = conetant at x = + e {39}
The edges at y = + ' are assumed to be fixed. The corresponding membrane

boundary conditions are

u! =u’ =0 aty=+{' or equivalently
s x
¢ =0 aty =+ §°* (40)
The equation of the middle surface may be taken in the form
2 2
7 = x ty (41)

2a
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whence the equation for the stress function

F’yy+F'xx=-ap {(42)

A particular solution of eq. (42) that satisfies the bouncdary condition
{39) may be taken in the ferm 2

X
Fp = - ap > (43)

to which correspond the stress resultants

N = F, = 0
XX vy
N =F, = - a
¥y P
N =-F, =0
Xy xy
The general solution Fh of the homogeneous equation is a harmeonic function

wkich in our case must identically satisfy the condition F = constant at

x =+ Q . The constant valueof F_ at x = + € mavy without loss of generality

h
be taken as zero. A suitable form for I"h is
oQ
(2n+1) mTx
F = x
Fu Z Gn (y) cos X (44)
n=20

Due to symmetry about the (y, 2} plane only cosine terms are considered.

These vanish for all values of n at x = + e . Substituting for Fh into the

differential equation and requiring it to be satisfied for the general term

in the expression of Fh yields the equation

2 2
{2n + 1) T _
- -———-———-—02 Gn =0 {45}

-
“4 ¢

G
n.vy

-

The general solution of which after enforcing symmetry may be written in

the form

G, =C_ cosh Q—“—%—él’—ir—l’ (46)

n

where Cn is an arbitrary constant of integration. F takes the form

2

)
= | .

F=- ap’}'tz‘"' + Z Cq cosh {2n ¢ Zz.“r. Y cos {2n ‘;é) Tx (47)
n=0
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With the assumption of shallowness i. e,

2
2 x
Z x 2 «< 1
a
2
22 -1 o«
v o2
and roting that
+F =
Fh,yy rh.xx 0
Eqgs. 27 to 29 reduce to
£ - 1 ) - Yap + 1 +¥
wx - Eh {Nxx )’Nyy} rh h F, vy (48)
. LYN = 2P _1tY
Eyy h (NYY VNxx) Eh Th ' vy (49)
2l +y) .21 ¥))
Qexy - Eh ny "7 Eh F'xy (59)
and the variational equation reduces to
0’ ¢
d ap+2F, )dF, +2F, OF, |dx=0 (51)
f( , Y Je [( P vy Yy xy xy

where JF, . JF, are the derivatives of
Yy Xy

BF = Z-_ é'Cn cosh (———-———LG;e JLS !os Contl)Tx ;él) rx (52)

n=20

fC

- -

n
The evaluation of the terms and the integrations in the variational

O

LS. - o a:
andc U(.‘.n 18 an arpilirary variation

equation are straight forward. In addition, the orthogonality of the cosine

and sine functions in the domain of integration allows the determination of

‘the integration constants one by one. The result is
2

n+l 8ap Q

{2n+i)mcl’
20

C =(-1) (53)
n

(2n+1 )3 rt3 cosh

whence
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o0 {(Znt+l) i (Zn+1}"x
N = Frgy = Z(-n“’ ap cos 2¢ €% TR (54)
;¢
n=0 (2n+1)iT cesh "M‘-
2¢
Nyy = F'xx =-ap - Nxx . {55}
o . Cntl)ry . (2otlTx
ny - F’xy - Z‘ {“”n-!-l 2ap sinh. i sin "7 (56)
7 ¢
n=o (2n+1) T cosh ——————-—-—‘2”’212”’ :

The convergence of the series is satisfactory near the ~pex of the
paraboloid but deteriorates when approaching the edges. At ‘he corners the
series for Nx diverges which indicates that the membrane solution does
not represent the state of siress in these regions. The same phenomerun
occurs when 2ll four edges are supported similarly to th» edges at x = 1 /.
The numerical resu1t39 for this last case give for Nxx and ny twice tie
values in eqs. 54 and 55, respectively.

It is interesting to note that if the particular sclution is taken in the

form
ap, 2 2
F ==z %
- B 4 b )
yielding
N =N =.22
X vy 2
N =¢
xy
the variational equation ceniains enly the homogeneous solution and is satis-
. ) A ) 2.
fied by letting F Po=- 52‘32 + y ) solves then the preblem of the

= 0.
h P 4
shailew paraboloid fixed 211 around 2 boundary of arbitrary shape.

Stress-Sirain Displacement Relations

A derivation of siress-displacement relations using the principle of
stationary complementary energy with the technique of Lagrange muitipliers

may be found in reference 3. The same results are stated in reference 5

9. V.V. Novozhilov, Op. Cit., p. 193
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anc zre obtained apparently through a different approach. Here the stress-
strzin relations are established by considering the strains as partial deri-
vatives of the complementary strain energy density function and the strain-
displacement relations are obtained through the principle of virtual work.
These methods are known in 3 dimensional elasticity and in the usual formu-
lation of shell theory in orthogonal curvilinear ceordinates. Applied in the
cartesian formulation of the membrane theory they yield the same results
found elsewhere.

By analogy to other formulations the components of strain in the car-
tesian formulation of the membrane theory may be defined without geometric
corsiderations by expressing the increment ef complementary strain energy

zx
the projected stress resultants in the form

AW = E LN +2€ dN__+ & 4N (57)
Xy Xy Yy vy

where € , € , and £ are the components of strain. This amounts to
XX Xy Yy

dersity due to avbitrary increments dN , dN , dN anddN =dN of
yy Xy yx Xy

defining the strains through egqs. 27 to 29. The strain-displacement rela-
tions expressing the sirains in terms of the caricsian componeats of dis-

placement ux, uy and u_ may now be found by requiring the validity of the
principle of virtual work which may be written in the form

y + 2N + N - ¥ + dx d
g(l\.xx &xx 2N £ 1 E_‘ dx dy [(p u_ p u p_u ) x dy

2y Xy vy
- f(N u' + N utlds =0 {58)
an n ns €

In eq. 58 the area integrals represent internal and external virtual work
reapectively, and the line integral represents the virtual work of the boun-
daxy stress resulianis. This may serve actually to define u; and u;. Eq.

58 must hold identically for any system of siress resultants and surface loads
in eguilibrium. Using the eguilibrium eguations 5 to 8 to substitute for P py,
and P then applying Green's theorem and equating fo zero the coefficients

of M , N , and N in the resulting area integral yields
x® Xy vy
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gxx = ux,x * Z’x uz,x (59)
=u +Z, u (60)
vy VAR Yy 2,V
2E =u +u +Z, u +Z, u (61)
Xy %,V ¥»x X 2,V y Z,X%

In the boundary integral N , N and N are expressed in terms of N ,
XX Yy xy nn
Ns@ and an through the transformation formulas 9 to 11 inverted, and u_

and uY are expressed in terms of components nermal and tangential to fhe

projected boundary through the relations

Q@

n = 9y cos@+ uy sigcp (62)

1}

a
8

. ing +u_c 63
-u sing uy cos @ (63}
This yields for u; and u‘s the defining relations
af =u +Z, u (64)
n n ne
' =u +2Z, u {65)
8 8 8 =
It may be shown through egs. 64 and 65, consistently with the interpretation
of u; and u'8 in eq. 58, that these are the componenis of the displacement

vector with regard to the normal and tangent to the projected beundary

when the third axis is the normal to the shell. The strain guantities gxx’

»

Yy
callsé extensional and shear strains. They are, however, the quantities to be

E and2 Exv do not represent, though they are related to, what is normally

relaied to the projected siress resultants. .

Interpretation of the Lagrange Multiplier and of the Natural Boundary Condition

The Euler differential equation of the variational equation JE' = 0 takes
now the significance of a '"compatibility equation" in terms of the stress result-
ants. Here by ”corﬂpatibility equation’ is meant the equation obtained from
eqs. 59 to 61 by eliminating e and uyz In fact, using eqs. 59 to 61 the following

identity in the displacements may be obtained.

ILfu y+ & -2E& + & =0 {66)
z X%, VY Xy, XY VY, X%
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Comparing eq. 66 with eq. 34 it is seen that the Lagrange multiplier \ obeys
the same difierential eguation as 4. In addition, if, for simplicity, a boun-
dary parallel tc the x axis is considered, the boundary condition {38) correspeading

to u* = 0 takes the form

“

€ xx

Az 22X
/ Z.
X2

From eqs. 59 and 65 the equivalent cendition u;{ = 0 yields
£ zx
z  Z,
: zX

It appears therefore that the Lagrange multiplier A may be identified with the
dieplacement component u_.

In deriving the natural boundary conditione, egs. 36 and 37, no refer-
ence to the displacements was made and the guantities En s Ess and 2 E’ns
were defined directly in terms of the stress resultants. Now, however, that
these are established as componente of strain it is inieresting to establish the
form the natural boundary conditions take when the strains are expressed in
terms of the displacement components. The result should obvicusly be a
consequence of the original dispiacement boundary conditions 19 and 20 and
should therefore be exprecssable in {erms of u;1 and u; only. In order to carry
out this transformation, the tenssr character of the components of strain,
which is indicated by the transformation formulas egs. 32 to 33 consistently

with egs. 27 to 292 and egs. 59 to 61, is used, yielding

&€ =u +Z, u {67)
nn n,n n z,n
c _ . o
C =u t¢,_u TZ,_ a (68)
2s 8,8 s n S z,8

2€& =u +a -@, u_ +2Z, u +2Z2, u {69)
ns n, 8 S,n s 8 5 2,n a 2,8 4

In terms of u' and u' as defined through egs. 64 and 65, eqe. 67 to 69 take
n s

the form
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s = !
Em +z, u al o (70)
+{(Z, +¢, ; =ut , uf 1y
Ess (z ss ? s z n)us Ls,s +CF s un (71}
E +2Z2, -@, Z, ) =u' F+u' +Fu' -@, ul ?
z ns { ‘n8 ? sz s’ z l“n,s un,s us,n CP 8 us )

It is seen that the quantities on the left of eqs. 70 to 72 are exactly thos:
occurring in the natural boundary conditions. Upon substitution these tize
the fcrm

¥
1 +. R u! .i. a3 0 vt
¢ s (F X n ¢ '

8,

=0 (73)

A .
' + ut - a' + (——) P = - F =7 =0
“n,es  P’s mn ?'ss st ) FCP g ON__ - ¢ N
nn , 8s nn , 88 HE
It is noted that egs. 73 and 74 are indeed a censequence of the boundzr
conditions in their original form, eqs. 19 and 20. It is interesting ‘s uote’
that the quantities
‘= ! + uf
2 8, B qy’s n

T
X n,ss s 1

i
[
-+
~
1 ]
B
w
[}
=

occurring on the left of eqe. 72 and 74 may be interpreted as an e:tlensional
strzin and a change of curvature, respectively, of the projected boundary

curve undergoing the plane displacements u; and u;.

Conclusion

The principle of stationary complementary energy may bc uced to
he streas resultants in a membrane subjected to displacement,
elastic, or mixed boundary conditions without necessarily deter nining the
displacements.

Alternatively, the determination of the stress resultants maybe per-
formed through the solution of 2 differential equations for the yiress function
and for the cartesian component of displacement along the Z zxis. The func-
tional form of the complemeniary strain energy deasity and the principle
of virtual work may be used to establish the stress-strain-displacement

relations in cartesian coordinates. It seems that the same approach provides
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a consistent method of formulating in cartesian ceordinates the gemeral

‘ equations of thin shell theory.




E
E,ET
F
h

J ,J
x v
L
n

N
P, P
pz
q

8
W, W
u ., u
'S

u

z
X,Y, %
3

N
v
&
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TABLE OF SYMBOLS

Young's modulusg
Functionals

Stress function

thickness of shell

Integrals of load components

Operator

Subscript associated with the normal to the projected boundary

Streass resultants

Components of distributed load intensity

Loading term <depending on P P P, and the geometry of the
membrane v

subscript associated with the arclength of the projected boundary

Complementary strain energy density

Components of displacement
Cartesian coordinates
Subscripts

Strain quantities

Angle between the oriented normal to the projected boundary and
the x axis

Function of the siress resultants acting on the boundary
Lagrange multiplier
Poisson's ratio

Angle between sections of the middle surface by the planes {(x, 2}
and (y, z)
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